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Short recap

Last time we discussed

« what patterns do we see by looking at flavour processes in data

* lepton universality, suppressed flavour-changing neutral currents, generation heirarchy
* how to construct the most general Lagrangians of Nature with scalar and fermion fields

« symmetry and its relation to observable phenomena (conservation laws)



Today’s learning targets

Today you will ...

* get familiar with different types of Abelian internal symmetries

* learn what happens if we impose these symmetries on the Lagrangian and what is the allowed

spectrum

* see an example of an Abelian theory: Quantum Electrodynamics (QED)



. “ My methods
Symmetries e
really methods
of working and
thinking; this is
why they have

creptin

« Symmetries are essential for understanding flavour physics! ™
. . . . . Emmy ™
« We will discuss various types of internal symmetries Mot
oeltner

* We will introduce the notion of charge and its relation to symmetries A
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« We will discuss various types of internal symmetries

“ My methods
[of algebra] are

€mmy A
Noether

« We will introduce the notion of charge and its relation to symmetries

Abelian © Non-Abelian

Global & Local

Discrete & Continuous

Chiral & Vectorial
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Global discrete symmetries

Global symmetry: a symmetry under transformations that are constant in spacetime

Let’s start with a simple example of imposing an internal global discrete symmetry on our Lagrangian

of a real scalar field ¢

1 2 A
£ =5 (0,9)(0"9) — 5 ¢* > =¢" 79"

We impose a discrete symmetry: we demand that Lg(¢) = Ls(—¢)

Which terms obey the symmetry, and which don’t?

Which conservation law corresponds to this symmetry?



Global discrete symmetries

1 2 A
L5 = (3,9)(04)) - —-¢? — 5"

By imposing the symmetry under ¢ - —¢ transformation, we forcen = 0
¢-parity = (—1)"
The number of ¢ particles described by Lg can change only by an even number: ¢p-parity conservation

In the language of group theory: Z, group with two elements — even (+) and odd ()

Zy | () (=)
¢?"  — even representation (_I_) (__ ) ( - )
$p?"*1 — odd reppresentation ( . ) ( B ) ( —|—)

» Lg belongs to the even representation of Z,

* ¢ belongs to the odd representation of Z,




Global continuous symmetries

Extend our discussion to symmetries under rotation in some internal space
Some fields not invariant under rotations but the combinations that appear in the Lagrangian are

Example: complex scalar field ¢ (¢r and ¢; real scalar fields)

1
¢ = ﬁ(ff’R +i¢y)
The most general renormalizable L(¢g, ¢;) is given by
1 mz Niik A Kl o
Lipr &) =506 (0u0:) (b)) —— i) — =~ bbb ——, bbb, LikI=RI

b Or cost) sinf
Consider rotations in the complex plane: y — O b, ; O = —sinf cosf

Which group is that?



Global continuous symmetries

* Global symmetry = 6 does not depend on x,,

* Imposing a global SO(2) symmetry on L(¢g, ¢;) forbids many terms and relates others

)ll]kl

1 7
L(pr 1) = 580,804 0) — =2 bidh) — "% bugh b

S0(2) ( Or ) N PR O — cos sind
Symmetry Or Q1 —sinf cos6

1 1 2 A
L(¢Pr, @) = ) (0,¢r) (0" Pr) + > (8,¢1)(0# ;) — mT (PrPr + P19)) — 2 (P + ¢f + 20507)

Tll]k

3 Pi®iPePr Lk L=RI




Global continuous symmetries

Alternatively, we can formulate the transformation law directly in terms of the complex field ¢
¢ - ei9¢, ¢'|‘ N e—i9¢'|‘
Imposing this symmetry on L(¢, ¢T) leads to

2
L(d, ¢7) = (0497) (0u0) —m*¢T¢ — A($7¢)
Rotations in a one-dimensional complex plane: U(1) symmetry (mathematically equivalent to SO(2))

* the different names reflect the way we think about the underlying space

Important points:

* the three terms do not violate any internal symmetry (no way to forbid them by imposing internal symmetry!)
« the same result can be obtained by scaling 8 by an any non-zero number: ¢p - ¢'4%¢

* different situation if we have more than one complex field



Charge (global symmetry)

Charge from electromagnetism:

1.  sets the strength of the interaction of the fermions with the photon

ii. 1t is a conserved quantity

Internal continuous symmetries < conserved charges (Noether’s theorem)

Theory with two complex scalar fields, ¢, and ¢,

p1 - e M0y, §y > e, o — e 0L, ¢
q;(—q;) is the charge of the qbl-(gb;r) field

We can’t set q; = q, = 1 because q1/q, is a physical quantity

_|.
2

- e79:0¢;



Charge (global symmetry)

* Theory with two complex fields, ¢, and ¢,, and charges g, = 1 and q, = 3

P, - el P, - elt¢, ol - e iwfpl @l 5 emiabpt

* The most general renormalisable Lagrangian is

L= (34p]) (9u¢1) + (841) (3,82) — m3pT b1 —m3bIdo — Ay ($7 1) — Ao (b h2)”
— M2 (d] 1) (@1 92) — (ndp3s +h.c.)

e Comments

* for a term to be allowed, the sum of the charges of the fields in this term must be zero

* all interactions allowed by the symmetry conserve the charge (each term in £ carries an overall charge zero)
* charge is related to a phase shift and can only be assigned to complex fields (g = 0 for real fields)

* two terms often used in the physics jargon instead of charges: quantum numbers (QNs) and representations



Symmetries and fermion masses

Define a U(1) phase transformation of Weyl fermions:
P - el iy, Pp — elr0y Y, - e MLy, Yr — e"lrOY

Note: g and ¥§ transform in the same way under all symmetries

Consider a theory with a single left-handed and single right-handed fermion fields + U(1) symmetry

 the symmetry is called chiral if q; # qp

* the symmetry is called vectorial if q, = qg

Generalising to the case with several fermion fields, the symmetry is vectorial if all LH and RH fields can

be matched into pairs with the same charge q;; = qg; for each i, and chiral otherwise

Important result: any chiral theory violates C and P (sufficient but not necessary condition)




Symmetries and fermion masses

MR_

Lm Yrpr +

Ui, + mp g + h.c.

To allow Dirac mass terms, the Charges of P, and Y must be opposite (true when q(;) = q(¥r))

To allow Majorana mass terms, a fermion field must be neutral under all U(1) symmetries

Consider a theory with m left-handed (LH) and n right-handed (RH) fields

Case I: all (m + n) fields carry the same charges, g # 0

Majorana mass terms vanish

Dirac mass terms for an mxn general complex matrix mp

Ly = (mp)ij()iWr); + h.c.

if m < n = m Dirac fermions and (n — m) massless RH fermions

if n < m = n Dirac fermions and (m — n) massless LH fermions

in the SM the charged fermions are present in three copies (m =

n = 3) with the same QN— m

(3%3)



Symmetries and fermion masses

MR_

Lm Yrpr +

Ui, + mp g + h.c.

Consider a theory with m left-handed (LH) and n right-handed (RH) fields

Case 1I: all (m + n) fields are neutral, g = 0

* both Majorana and Dirac mass terms are allowed

(m + n)X(m + n) symmetric complex matrix M,

o (m" mp N (g
( wL wR ) T(nxm) (nxn)
mp Myrr VR

the (m + n) mass eigenstates are Majorana fermions

in the SM, neutrinos are the only neutral fermions withm = 3 and n = 0

(3%3)
ML

if they have Majorana masses then their mass matrix is m

15



Symmetries and fermion masses

Dirac Majorana
# of degrees of freedom 4 2
Representation vector neutral
Mass matrix m X n, general (m +n) X (m -+ n), symmetric
SM fermions quarks, charged leptons neutrinos (7)

Important differences between Majorana and Dirac particles

Lesson to be extracted from these differences: charged fermions in a chiral representation (q; # qr) are

massless = if we encounter massless fermions in nature, we can explain their masslessness from

symmetry principles

16



Local (gauge) symmetries

Local (gauge) symmetries: symmetries, where the transformation can be different at different space-

time points H(xﬂ)

Local symmetries have far-reaching consequences!

All internal symmetries imposed in defining the SM are local
Local transformation of a complex scalar field:

Pp(x) > e@¥®p(x),  PpT(x) - e W pT(x)

All terms in the Lagrangian that do not involve derivatives of fields and are invariant under a global

symmetry are also invariant under the corresponding local symmetry

17



Local (gauge) symmetries

* The derivative terms are not invariant under the local symmetry
0*p(x) » 0¥ [P (x)] = ' 1PDp(x) + iqe 1P P[0 (x)]¢ (x)

« = the kinetic term of a scalar is not invariant under the local symmetry (same is true for fermion fields)
T (x)0,p(x) — [9*pT(x) — iq[o*8()]¢T(x)][9, P Cx) + iq[0,0 ()P (x)]| # 9*¢T(x)a,P(x)

* Consequence: in a theory with only scalar and fermions fields a local symmetry acting on these fields

forbids the kinetic terms.

* this is a BIG deal: such fields are not dynamic and can’t describe the particles we observe in nature!

* we have to find a way to “correct” for this

18



Local (gauge) symmetries

Replace the kinetic term 9% ¢ with a so-called “covariant” derivative D*¢
D#¢ should transform under the local symmetry as 0#¢ under the global symmetry
D¢ — elad D*¢
Using the local transformation ¢ — e'4% ¢ (x-dependence implicit) we get for the covariant derivative

D¥ = g* + igqA* AH — A* — 16”9
g
g is a dimensionless constant which we take to be positive (coupling constant)

AH(x) is a vector field that transforms under the local symmetry (gauge field)

Following our principles we must add a kinetic term for the gauge field A#



Local (gauge) symmetries

* To add a kinetic term for A* we define the field strength tensor F*¥
[DH, D] = igqF* FHY = gHAY — Y AH
* The Lorentz-invariant kinetic term for the gauge field is (invariant under the local symmetry)

1
L= _ZFMVFMV

« Important points:

 given the kinetic term, A* is a dynamic field and its excitations are physical particles (e.g. the photon)

* amass term of the form %mzA“AM is not allowed (show that it breaks gauge invariance)— gauge bosons have
only two degrees of freedom
* a gauge field related to an Abelian symmetry does not couple to itself

* transformation law for the gauge field is additive (A# transforms like a phase)

* if alocal symmetry decomposes U(1),xU(1), — two gauge fields A}, A} + two independent couplings g,, g



Charge (local symmetry)

* Global symmetry implies charge conservation

* In the case of local symmetry there is an additional implication to the charge

Any ideas what is the implication?



Charge (local symmetry)

Global symmetry implies charge conservation

In the case of local symmetry there is an additional implication to the charge: it sets the strength of the

interaction with the gauge boson
Consider a local U(1) symmetry. The covariant derivative of a field with charge q is

DHF = 9* + igqAH

) ) ) i i Interaction between the
The kinetic term of the fermion field is / fermion and the vector field!

iWpy*D Y = ipyHo, P — gqy ALY

The strength of the interaction is governed by the coupling constant g times the charge g

22



Charge (local symmetry)

Interaction between the
fermion and the vector field!

o

D# = 9" + igqA¥ ipy*D,p = ihyHo,p — gqy A

* The larger the charge ¢, the stronger the coupling to the gauge boson

e Comments:

D#* depends on the charge of the field on which it acts (different for fields with different charges)
what appears in the Lagrangian is ggq, not g and q separately

for Abelian local symmetries one can rescale the coupling and the charge to keep gq constant
when we have several fields with the same charges one should rescale all of them the same way

ratio between the charges of all fields (e.g. g, /q1) is physical and sets the relative strength of the interaction of

Y, and ; with the gauge field 4, (different in the non-Abelian case)



Abelian symmetries summary

free propagation scalar potential
through spacetime of
all dynamic fields l

S
L = Lkin + ,Cl/) + L(p + LYuk

Yukawa interactions
between the scalar
Fermion mass terms and fermion fields

The most general renormalisable £ with scalar, fermion, and gauge can be decomposed into four terms
The invariance under local U(1) symmetry requires the introduction of vector (gauge) bosons

The vector boson interacts with all scalars and fermions charged under the symmetry

Global symmetry = charge conservation

Local symmetry = the charge sets the strength of the interaction with the gauge field

In the SM we impose only local symmetries (Abelian and non-Abelian) .



Example of an Abelian theory: Quantum electrodynamics (QED)

« Simple version of QED with two Dirac fermions:
* local U(1)gym theory
« two Dirac fermions: £} (—1),£5(=1) [i =1,2]

* no scalar fields Lyyx = Ly =0

Lyn = i€LyHD, £} + i03y"D, 07 + ilhy"D, Lk + it%y* D, ¢3

— : My, My (R
—Ly = £imyith +h.c.= (£}, £2) [mi m;z] (@) +h.c.

V1, Vg — unitary matrices

mqi1 Myq3 + me 0 P + j

Diagonalise the mass matrix
(question 3.5 in the book)



Example of an Abelian theory: Quantum electrodynamics (QED)

* Rotation from the original basis to the new one where the mass matrix is diagonal (mass basis)

()~ () =nl) (&)~ Go)-w(a)
- — , —d =
f% KL ‘ f% f%e UR A f%z
In the new
basis

—Ly = meee + my iy

* The rotation keeps the kinetic term invariant, the full QED Lagrangian is then
. — M . — M 1 Mv —_— —_—
Lyin = tey"Dye +ipy"D,u — ZFWF — Mmeee —my il

* Three free parameters: « = e? /4w, m,, my,

a1 =137.035999084(21), m, = 0.51099895000(15) MeV/c?, m, = 105.6583755(23) MeV/c?

26



Summary of Lecture 2

Main learning outcomes

* Get familiar with different types of Abelian internal symmetries

* Learn what happens if we impose these symmetries on the Lagrangian and what is the spectrum of

allowed fields and interactions

* See an example of an Abelian theory: Quantum Electrodynamics (QED)



