
Particle physics: the flavour frontiers
Lecture 2: Abelian symmetries

Prof. Radoslav Marchevski
February 26th 2025

 
1



Short recap 

Last time we discussed

• what patterns do we see by looking at flavour processes in data

• lepton universality, suppressed flavour-changing neutral currents, generation heirarchy

• how to construct the most general Lagrangians of Nature with scalar and fermion fields

• symmetry and its relation to observable phenomena (conservation laws)
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Today’s learning targets

Today you will …

• get familiar with different types of Abelian internal symmetries

• learn what happens if we impose these symmetries on the Lagrangian and what is the allowed 

spectrum

• see an example of an Abelian theory: Quantum Electrodynamics (QED)
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Symmetries

• Symmetries are essential for understanding flavour physics!

• We will discuss various types of internal symmetries

• We will introduce the notion of charge and its relation to symmetries
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Global ⟺ Local

Abelian ⟺ Non-Abelian
Discrete ⟺ Continuous

Chiral ⟺ Vectorial



Global discrete symmetries

• Global symmetry: a symmetry under transformations that are constant in spacetime

• Let’s start with a simple example of imposing an internal global discrete symmetry on our Lagrangian 

of a real scalar field 𝜙

• We impose a discrete symmetry: we demand that ℒ! 𝜙 = ℒ! −𝜙

• Which terms obey the symmetry, and which don’t?

• Which conservation law corresponds to this symmetry?
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Global discrete symmetries

• By imposing the symmetry under 𝜙 → −𝜙 transformation, we force 𝜂 = 0

• 𝜙-parity = −1 "

• The number of 𝜙 particles described by ℒ! can change only by an even number: 𝜙-parity conservation

• In the language of group theory: 𝑍# group with two elements – even +  and odd −

• ℒ! belongs to the even representation of 𝑍"

• 𝜙 belongs to the odd representation of 𝑍"
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Global continuous symmetries

• Extend our discussion to symmetries under rotation in some internal space

• Some fields not invariant under rotations but the combinations that appear in the Lagrangian are

• Example: complex scalar field 𝜙 (𝜙$ and 𝜙% real scalar fields)

• The most general renormalizable ℒ 𝜙$, 𝜙%  is given by

• Consider rotations in the complex plane:
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Which group is that?



Global continuous symmetries

• Global symmetry ⟹ 𝜃 does not depend on 𝑥&

• Imposing a global 𝑆𝑂 2  symmetry on ℒ 𝜙$, 𝜙%  forbids many terms and relates others
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Global continuous symmetries

• Alternatively, we can formulate the transformation law directly in terms of the complex field 𝜙

• Imposing this symmetry on ℒ 𝜙, 𝜙'  leads to

• Rotations in a one-dimensional complex plane: 𝑈 1  symmetry (mathematically equivalent to 𝑆𝑂 2 )

• the different names reflect the way we think about the underlying space

• Important points:

• the three terms do not violate any internal symmetry (no way to forbid them by imposing internal symmetry!)

• the same result can be obtained by scaling 𝜃 by an any non-zero number: 𝜙 → 𝑒&'(𝜙

• different situation if we have more than one complex field
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ℒ 𝜙, 𝜙* = 𝜕%𝜙* 𝜕%𝜙 −𝑚&𝜙*𝜙 − 𝜆 𝜙*𝜙 &
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Charge (global symmetry)

• Charge from electromagnetism:

i. sets the strength of the interaction of the fermions with the photon

ii. it is a conserved quantity

• Internal continuous symmetries ⟺ conserved charges (Noether’s theorem)

• Theory with two complex scalar fields, 𝜙+ and 𝜙#

• 𝑞((−𝑞() is the charge of the 𝜙( 𝜙(
'  field

• We can’t set 𝑞+ = 𝑞# = 1 because 𝑞+/𝑞# is a physical quantity 
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Charge (global symmetry)

• Theory with two complex fields, 𝜙+ and 𝜙#, and charges 𝑞+ = 1 and 𝑞# = 3

• The most general renormalisable Lagrangian is

• Comments

• for a term to be allowed, the sum of the charges of the fields in this term must be zero

• all interactions allowed by the symmetry conserve the charge (each term in ℒ carries an overall charge zero)

• charge is related to a phase shift and can only be assigned to complex fields (𝑞 = 0 for real fields)

• two terms often used in the physics jargon instead of charges: quantum numbers (QNs) and representations
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Symmetries and fermion masses

• Define a 𝑈 1  phase transformation of Weyl fermions:

• Note: 𝜓$ and 𝜓$-  transform in the same way under all symmetries

• Consider a theory with a single left-handed and single right-handed fermion fields + 𝑈 1  symmetry

• the symmetry is called chiral if 𝑞# ≠ 𝑞$

• the symmetry is called vectorial if 𝑞# = 𝑞$

• Generalising to the case with several fermion fields, the symmetry is vectorial if all LH and RH fields can 

be matched into pairs with the same charge 𝑞.( = 𝑞$( for each 𝑖, and chiral otherwise

• Important result: any chiral theory violates 𝐶 and 𝑃 (sufficient but not necessary condition)
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𝜓. → 𝑒(,%)𝜓., 	 𝜓$ → 𝑒(,&)𝜓$ 𝜓. → 𝑒*(,%)𝜓., 𝜓$ → 𝑒*(,&)𝜓$



Symmetries and fermion masses

• To allow Dirac mass terms, the charges of 𝜓. and 𝜓$ must be opposite (true when 𝑞 𝜓. = 𝑞(𝜓$))

• To allow Majorana mass terms, a fermion field must be neutral under all 𝑈 1  symmetries

• Consider a theory with 𝑚 left-handed (LH) and 𝑛 right-handed (RH) fields

• Case I: all 𝑚 + 𝑛  fields carry the same charges, 𝑞 ≠ 0

• Majorana mass terms vanish

• Dirac mass terms for an 𝑚×𝑛 general complex matrix 𝑚)

• if 𝑚 ≤ 𝑛 ⟹ 𝑚 Dirac fermions and (𝑛 − 𝑚) massless RH fermions

• if 𝑛 ≤ 𝑚 ⟹ 𝑛  Dirac fermions and 𝑚 − 𝑛  massless LH fermions

• in the SM the charged fermions are present in three copies 𝑚 = 𝑛 = 3  with the same QN→ 𝑚)
(+×+)
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Symmetries and fermion masses

• Consider a theory with 𝑚 left-handed (LH) and 𝑛 right-handed (RH) fields

• Case II: all 𝑚 + 𝑛  fields are neutral, 𝑞 = 0

• both Majorana and Dirac mass terms are allowed

• 𝑚 + 𝑛 × 𝑚 + 𝑛  symmetric complex matrix 𝑀.

• the 𝑚 + 𝑛  mass eigenstates are Majorana fermions 

• in the SM, neutrinos are the only neutral fermions with 𝑚 = 3 and 𝑛 = 0 

• if they have Majorana masses then their mass matrix is 𝑚/0
(+×+)
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Symmetries and fermion masses

• Important differences between Majorana and Dirac particles

• Lesson to be extracted from these differences: charged fermions in a chiral representation (𝑞. ≠ 𝑞$) are 

massless ⟹ if we encounter massless fermions in nature, we can explain their masslessness from 

symmetry principles
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Local (gauge) symmetries

• Local (gauge) symmetries: symmetries, where the transformation can be different at different space-

time points 𝜃 𝑥&

• Local symmetries have far-reaching consequences!

• All internal symmetries imposed in defining the SM are local

• Local transformation of a complex scalar field:

• All terms in the Lagrangian that do not involve derivatives of fields and are invariant under a global 

symmetry are also invariant under the corresponding local symmetry
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𝜙 𝑥 → 𝑒(,) / 𝜙 𝑥 , 	 𝜙' 𝑥 → 𝑒*(,) / 𝜙' 𝑥



Local (gauge) symmetries

• The derivative terms are not invariant under the local symmetry

• ⟹ the kinetic term of a scalar is not invariant under the local symmetry (same is true for fermion fields)

• Consequence: in a theory with only scalar and fermions fields a local symmetry acting on these fields 

forbids the kinetic terms. 

• this is a BIG deal: such fields are not dynamic and can’t describe the particles we observe in nature!

• we have to find a way to “correct” for this
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Local (gauge) symmetries

• Replace the kinetic term 𝜕&𝜙	with a so-called “covariant” derivative 𝐷&𝜙

• 𝐷&𝜙 should transform under the local symmetry as 𝜕&𝜙 under the global symmetry

• Using the local transformation 𝜙 → 𝑒(,)𝜙 (𝑥-dependence implicit) we get for the covariant derivative

• 𝑔	is a dimensionless constant which we take to be positive (coupling constant)

• 𝐴&(𝑥) is a vector field that transforms under the local symmetry (gauge field)

• Following our principles we must add a kinetic term for the gauge field 𝐴&
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𝐷&𝜙 → 𝑒(,)𝐷&𝜙

𝐷& = 𝜕& + 𝑖𝑔𝑞𝐴& 𝐴& → 𝐴& −
1
𝑔
𝜕&𝜃



Local (gauge) symmetries
• To add a kinetic term for 𝐴& we define the field strength tensor 𝐹&0

• The Lorentz-invariant kinetic term for the gauge field is (invariant under the local symmetry)

• Important points:

• given the kinetic term, 𝐴1 is a dynamic field and its excitations are physical particles (e.g. the photon)

• a mass term of the form %
"
𝑚"𝐴1𝐴1 is not allowed (show that it breaks gauge invariance)→ gauge bosons have 

only two degrees of freedom

• a gauge field related to an Abelian symmetry does not couple to itself

• transformation law for the gauge field is additive (𝐴1 transforms like a phase)

• if a local symmetry decomposes 𝑈 1 2×𝑈 1 3 → two gauge fields 𝐴12 , 𝐴13 + two independent couplings 𝑔2 , 𝑔3
20

ℒ = −
1
4
𝐹&0𝐹&0

𝐹&0 = 𝜕&𝐴0 − 𝜕0𝐴&𝐷&, 𝐷0 = 𝑖𝑔𝑞𝐹&0



Charge (local symmetry)

• Global symmetry implies charge conservation

• In the case of local symmetry there is an additional implication to the charge
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Any ideas what is the implication?



Charge (local symmetry)

• Global symmetry implies charge conservation

• In the case of local symmetry there is an additional implication to the charge: it sets the strength of the 

interaction with the gauge boson

• Consider a local 𝑈 1  symmetry. The covariant derivative of a field with charge 𝑞 is

• The kinetic term of the fermion field is

• The strength of the interaction is governed by the coupling constant 𝑔 times the charge 𝑞
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𝐷& = 𝜕& + 𝑖𝑔𝑞𝐴&

𝑖 M𝜓𝛾&𝐷&𝜓 = 𝑖 M𝜓𝛾&𝜕&𝜓 − 𝑔𝑞 M𝜓𝛾&𝐴&𝜓

Interaction between the 
fermion and the vector field!



Charge (local symmetry)

• The larger the charge 𝑞, the stronger the coupling to the gauge boson

• Comments:

• 𝐷1 depends on the charge of the field on which it acts (different for fields with different charges)

• what appears in the Lagrangian is 𝑔𝑞, not 𝑔 and 𝑞 separately

• for Abelian local symmetries one can rescale the coupling and the charge to keep 𝑔𝑞 constant

• when we have several fields with the same charges one should rescale all of them the same way

• ratio between the charges of all fields (e.g. 𝑞"/𝑞%) is physical and sets the relative strength of the interaction of 

𝜓" and 𝜓% with the gauge field 𝐴1 (different in the non-Abelian case)
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𝐷& = 𝜕& + 𝑖𝑔𝑞𝐴& 𝑖 M𝜓𝛾&𝐷&𝜓 = 𝑖 M𝜓𝛾&𝜕&𝜓 − 𝑔𝑞 M𝜓𝛾&𝐴&𝜓
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Abelian symmetries summary

• The most general renormalisable ℒ with scalar, fermion, and gauge can be decomposed into four terms

• The invariance under local 𝑈 1  symmetry requires the introduction of vector (gauge) bosons

• The vector boson interacts with all scalars and fermions charged under the symmetry

• Global symmetry ⟹ charge conservation

• Local symmetry ⟹ the charge sets the strength of the interaction with the gauge field

• In the SM we impose only local symmetries (Abelian and non-Abelian)
24

ℒ = ℒRST + ℒU + ℒV + ℒWXR

free propagation 
through spacetime of 

all dynamic fields

Fermion mass terms

scalar potential

Yukawa interactions 
between the scalar 
and fermion fields



Example of an Abelian theory: Quantum electrodynamics (QED)
• Simple version of QED with two Dirac fermions:

• local 𝑈 1 '( theory

• two Dirac fermions: ℓ#) −1 , ℓ$) −1 	 [𝑖 = 1, 2]

• no scalar fields ℒ*+, = ℒ- = 0
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−ℒU = ℓFY𝑚YZℓD
Z + h. c. = ℓF[, ℓF\

𝑚[[ 𝑚[\
𝑚\[ 𝑚\\

ℓD[

ℓD\
+ h. c.

ℒRST = 𝑖ℓF[𝛾]𝐷]ℓF[ + 𝑖ℓF\𝛾]𝐷]ℓF\ + 𝑖ℓD[𝛾]𝐷]ℓD[ + 𝑖ℓD\𝛾]𝐷]ℓD\

𝑉F
𝑚[[ 𝑚[\
𝑚\[ 𝑚\\

𝑉D
^ =

𝑚_ 0
0 𝑚]

Diagonalise the mass matrix 
(question 3.5 in the book)

−ℒU = ℓFY 𝑉F
^𝑉F𝑚YZ𝑉D

^𝑉DℓD
Z + h. c.

𝑉#, 𝑉$ − unitary matrices



Example of an Abelian theory: Quantum electrodynamics (QED)
• Rotation from the original basis to the new one where the mass matrix is diagonal (mass basis)

• The rotation keeps the kinetic term invariant, the full QED Lagrangian is then

• Three free parameters: 𝛼 = 𝑒#/4𝜋,𝑚1, 𝑚&
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ℓF[

ℓF\
→

𝑒F
𝜇F

= 𝑉F
ℓF[

ℓF\
,

ℓD[

ℓD\
→

𝑒D
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ℒRST = 𝑖𝑒̅𝛾]𝐷]𝑒 + 𝑖𝜇̅𝛾]𝐷]𝜇 −
1
4
𝐹]`𝐹]` −𝑚_𝑒̅𝑒 − 𝑚]𝜇̅𝜇

−ℒU = 𝑚_𝑒̅𝑒 + 𝑚]𝜇̅𝜇

In the new 
basis

𝜶4𝟏 = 𝟏𝟑𝟕. 𝟎𝟑𝟓𝟗𝟗𝟗𝟎𝟖𝟒 𝟐𝟏 , 𝒎𝒆 = 𝟎. 𝟓𝟏𝟎𝟗𝟗𝟖𝟗𝟓𝟎𝟎𝟎 𝟏𝟓 	𝐌𝐞𝐕/𝒄𝟐, 	 𝒎𝝁 = 𝟏𝟎𝟓. 𝟔𝟓𝟖𝟑𝟕𝟓𝟓(𝟐𝟑)	𝐌𝐞𝐕/𝒄𝟐



Summary of Lecture 2

Main learning outcomes

• Get familiar with different types of Abelian internal symmetries

• Learn what happens if we impose these symmetries on the Lagrangian and what is the spectrum of 

allowed fields and interactions

• See an example of an Abelian theory: Quantum Electrodynamics (QED)
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