

Particle physics: the flavour frontiers

Lecture 2: Abelian symmetries

Prof. Radoslav Marchevski
February 26th 2025

Short recap

Last time we discussed

- what patterns do we see by looking at flavour processes in data
 - lepton universality, suppressed flavour-changing neutral currents, generation hierarchy
- how to construct the most general Lagrangians of Nature with scalar and fermion fields
- symmetry and its relation to observable phenomena (conservation laws)

Today's learning targets

Today you will ...

- get familiar with different types of Abelian internal symmetries
- learn what happens if we impose these symmetries on the Lagrangian and what is the allowed spectrum
- see an example of an Abelian theory: Quantum Electrodynamics (QED)

Symmetries

- Symmetries are essential for understanding flavour physics!
- We will discuss various types of internal symmetries
- We will introduce the notion of charge and its relation to symmetries

“ My methods [of algebra] are really methods of working and thinking; this is why they have crept in everywhere anonymously. ”

Emmy
Noether

Symmetries

- Symmetries are essential for understanding flavour physics!
- We will discuss various types of internal symmetries
- We will introduce the notion of charge and its relation to symmetries

“ My methods [of algebra] are really methods of working and thinking; this is why they have crept in everywhere anonymously. ”

Emmy
Noether

Abelian \leftrightarrow Non-Abelian

Discrete \leftrightarrow Continuous

Global \leftrightarrow Local

Chiral \leftrightarrow Vectorial

Global discrete symmetries

- **Global symmetry:** *a symmetry under transformations that are constant in spacetime*
- Let's start with a simple example of imposing an internal global discrete symmetry on our Lagrangian of a real scalar field ϕ

$$\mathcal{L}_S = \frac{1}{2}(\partial_\mu \phi)(\partial^\mu \phi) - \frac{m^2}{2}\phi^2 - \frac{\eta}{2\sqrt{2}}\phi^3 - \frac{\lambda}{4}\phi^4$$

- We impose a discrete symmetry: we demand that $\mathcal{L}_S(\phi) = \mathcal{L}_S(-\phi)$
- Which terms obey the symmetry, and which don't?
- Which conservation law corresponds to this symmetry?

Global discrete symmetries

$$\mathcal{L}_S = \frac{1}{2}(\partial_\mu \phi)(\partial^\mu \phi) - \frac{m^2}{2}\phi^2 - \frac{\lambda}{4}\phi^4$$

- By imposing the symmetry under $\phi \rightarrow -\phi$ transformation, we force $\eta = 0$
- ϕ -parity = $(-1)^n$
- The number of ϕ particles described by \mathcal{L}_S can change only by an *even number*: **ϕ -parity conservation**
- In the language of group theory: Z_2 group with two elements – even (+) and odd (-)

- \mathcal{L}_S belongs to the even representation of Z_2
- ϕ belongs to the odd representation of Z_2

ϕ^{2n} – even representation
 ϕ^{2n+1} – odd representation

Z_2	(+)	(-)
(+)	(+)	(-)
(-)	(-)	(+)

Global continuous symmetries

- Extend our discussion to symmetries under rotation **in some internal space**
- Some fields not invariant under rotations but the combinations that appear in the Lagrangian are
- *Example:* complex scalar field ϕ (ϕ_R and ϕ_I real scalar fields)

$$\phi = \frac{1}{\sqrt{2}}(\phi_R + i\phi_I)$$

- The most general renormalizable $\mathcal{L}(\phi_R, \phi_I)$ is given by

$$\mathcal{L}(\phi_R, \phi_I) = \frac{1}{2}\delta_{ij}(\partial_\mu\phi_i)(\partial^\mu\phi_j) - \frac{m_{ij}^2}{2}\phi_i\phi_j - \frac{\eta_{ijk}}{6}\phi_i\phi_j\phi_k - \frac{\lambda_{ijkl}}{24}\phi_i\phi_j\phi_k\phi_l, \quad i, j, k, l = R, I$$

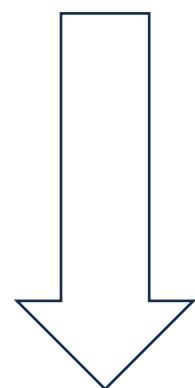
- Consider rotations in the complex plane: $\begin{pmatrix} \phi_R \\ \phi_I \end{pmatrix} \rightarrow O \begin{pmatrix} \phi_R \\ \phi_I \end{pmatrix}, \quad O = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

Which group is that?

Global continuous symmetries

- Global symmetry $\Rightarrow \theta$ does not depend on x_μ
- Imposing a global $SO(2)$ symmetry on $\mathcal{L}(\phi_R, \phi_I)$ forbids many terms and relates others

$$\mathcal{L}(\phi_R, \phi_I) = \frac{1}{2} \delta_{ij} (\partial_\mu \phi_i) (\partial^\mu \phi_j) - \frac{m_{ij}^2}{2} \phi_i \phi_j - \frac{\eta_{ijk}}{6} \phi_i \phi_j \phi_k - \frac{\lambda_{ijkl}}{24} \phi_i \phi_j \phi_k \phi_l, \quad i, j, k, l = R, I$$

 $so(2)$ symmetry $\begin{pmatrix} \phi_R \\ \phi_I \end{pmatrix} \rightarrow O \begin{pmatrix} \phi_R \\ \phi_I \end{pmatrix}, \quad O = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

$$\mathcal{L}(\phi_R, \phi_I) = \frac{1}{2} (\partial_\mu \phi_R) (\partial^\mu \phi_R) + \frac{1}{2} (\partial_\mu \phi_I) (\partial^\mu \phi_I) - \frac{m^2}{2} (\phi_R \phi_R + \phi_I \phi_I) - \frac{\lambda}{4} (\phi_R^4 + \phi_I^4 + 2\phi_R^2 \phi_I^2)$$

Global continuous symmetries

- Alternatively, we can formulate the transformation law directly in terms of the complex field ϕ

$$\phi \rightarrow e^{i\theta} \phi, \quad \phi^\dagger \rightarrow e^{-i\theta} \phi^\dagger$$

- Imposing this symmetry on $\mathcal{L}(\phi, \phi^\dagger)$ leads to

$$\mathcal{L}(\phi, \phi^\dagger) = (\partial^\mu \phi^\dagger) (\partial_\mu \phi) - m^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2$$

- Rotations in a one-dimensional complex plane: $U(1)$ symmetry (mathematically equivalent to $SO(2)$)

- the different names reflect the way we think about the underlying space

- **Important points:**

- the three terms do not violate any internal symmetry (no way to forbid them by imposing internal symmetry!)
 - the same result can be obtained by scaling θ by an any non-zero number: $\phi \rightarrow e^{iq\theta} \phi$
 - different situation if we have more than one complex field

Charge (global symmetry)

- Charge from electromagnetism:
 - sets the strength of the interaction of the fermions with the photon*
 - it is a conserved quantity*
- Internal continuous symmetries \Leftrightarrow conserved charges (Noether's theorem)

- Theory with two complex scalar fields, ϕ_1 and ϕ_2

$$\phi_1 \rightarrow e^{iq_1\theta} \phi_1, \quad \phi_2 \rightarrow e^{iq_2\theta} \phi_2 \quad \phi_1^\dagger \rightarrow e^{-iq_1\theta} \phi_1^\dagger, \quad \phi_2^\dagger \rightarrow e^{-iq_2\theta} \phi_2^\dagger$$

- $q_i(-q_i)$ is the charge of the $\phi_i(\phi_i^\dagger)$ field
- We can't set $q_1 = q_2 = 1$ because q_1/q_2 is a physical quantity

Charge (global symmetry)

- Theory with two complex fields, ϕ_1 and ϕ_2 , and charges $q_1 = 1$ and $q_2 = 3$

$$\phi_1 \rightarrow e^{iq_1\theta} \phi_1, \quad \phi_2 \rightarrow e^{iq_2\theta} \phi_2 \quad \phi_1^\dagger \rightarrow e^{-iq_1\theta} \phi_1^\dagger, \quad \phi_2^\dagger \rightarrow e^{-iq_2\theta} \phi_2^\dagger$$

- The most general renormalisable Lagrangian is

$$\begin{aligned} \mathcal{L} = & (\partial^\mu \phi_1^\dagger) (\partial_\mu \phi_1) + (\partial^\mu \phi_2^\dagger) (\partial_\mu \phi_2) - m_1^2 \phi_1^\dagger \phi_1 - m_2^2 \phi_2^\dagger \phi_2 - \lambda_{11} (\phi_1^\dagger \phi_1)^2 - \lambda_{22} (\phi_2^\dagger \phi_2)^2 \\ & - \lambda_{12} (\phi_1^\dagger \phi_1) (\phi_2^\dagger \phi_2) - (\eta \phi_1^3 \phi_2^\dagger + \text{h. c.}) \end{aligned}$$

- Comments

- for a term to be allowed, the sum of the charges of the fields in this term must be zero
- all interactions allowed by the symmetry conserve the charge (each term in \mathcal{L} carries an overall charge zero)
- charge is related to a phase shift and can only be assigned to complex fields ($q = 0$ for real fields)
- two terms often used in the physics jargon instead of *charges*: *quantum numbers (QNs)* and *representations*

Symmetries and fermion masses

- Define a $U(1)$ phase transformation of Weyl fermions:

$$\psi_L \rightarrow e^{iq_L\theta} \psi_L, \quad \psi_R \rightarrow e^{iq_R\theta} \psi_R \quad \overline{\psi}_L \rightarrow e^{-iq_L\theta} \overline{\psi}_L, \quad \overline{\psi}_R \rightarrow e^{-iq_R\theta} \overline{\psi}_R$$

- Note: ψ_R and $\overline{\psi}_R^c$ transform in the same way under all symmetries

- Consider a theory with a single left-handed and single right-handed fermion fields + $U(1)$ symmetry
 - the symmetry is called *chiral* if $q_L \neq q_R$
 - the symmetry is called *vectorial* if $q_L = q_R$
- Generalising to the case with several fermion fields, the symmetry is *vectorial* if all LH and RH fields can be matched into pairs with the same charge $q_{Li} = q_{Ri}$ for each i , and *chiral* otherwise
- Important result: any chiral theory violates C and P (sufficient but not necessary condition)

Symmetries and fermion masses

$$\mathcal{L}_m = \frac{m_{MR}}{2} \overline{\psi}_R^c \psi_R + \frac{m_{MR}}{2} \overline{\psi}_L^c \psi_L + m_D \overline{\psi}_L \psi_R + h.c.$$

- To allow Dirac mass terms, the charges of $\overline{\psi}_L$ and ψ_R must be opposite (true when $q(\psi_L) = q(\psi_R)$)
- To allow Majorana mass terms, a fermion field must be neutral under all $U(1)$ symmetries
- Consider a theory with ***m*** left-handed (LH) and ***n*** right-handed (RH) fields
- Case I: all $(m + n)$ fields carry the same charges, $q \neq 0$
 - Majorana mass terms vanish
 - Dirac mass terms for an $m \times n$ general complex matrix m_D

$$\mathcal{L}_m = (m_D)_{ij} (\overline{\psi}_L)_i (\psi_R)_j + h.c.$$

- if $m \leq n \Rightarrow m$ Dirac fermions and $(n - m)$ massless RH fermions
- if $n \leq m \Rightarrow n$ Dirac fermions and $(m - n)$ massless LH fermions
- in the SM the charged fermions are present in three copies ($m = n = 3$) with the same QN $\rightarrow m_D^{(3 \times 3)}$

Symmetries and fermion masses

$$\mathcal{L}_m = \frac{m_{MR}}{2} \overline{\psi}_R^c \psi_R + \frac{m_{MR}}{2} \overline{\psi}_L^c \psi_L + m_D \overline{\psi}_L \psi_R + h.c.$$

- Consider a theory with m left-handed (LH) and n right-handed (RH) fields
- Case II: all $(m + n)$ fields are neutral, $q = 0$
 - both Majorana and Dirac mass terms are allowed
 - $(m + n) \times (m + n)$ symmetric complex matrix M_ψ

$$\begin{pmatrix} \overline{\psi}_L & \overline{\psi}_R^c \end{pmatrix} \begin{pmatrix} m_{ML}^{(m \times m)} & m_D^{(m \times n)} \\ m_D^{T(n \times m)} & m_{MR}^{(n \times n)} \end{pmatrix} \begin{pmatrix} \psi_L^c \\ \psi_R \end{pmatrix}$$

- the $(m + n)$ mass eigenstates are Majorana fermions
- in the SM, neutrinos are the only neutral fermions with $m = 3$ and $n = 0$
- if they have Majorana masses then their mass matrix is $m_{ML}^{(3 \times 3)}$

Symmetries and fermion masses

	Dirac	Majorana
# of degrees of freedom	4	2
Representation	vector	neutral
Mass matrix	$m \times n$, general	$(m+n) \times (m+n)$, symmetric
SM fermions	quarks, charged leptons	neutrinos (?)

- Important differences between Majorana and Dirac particles
- Lesson to be extracted from these differences: charged fermions in a chiral representation ($q_L \neq q_R$) are massless \Rightarrow if we encounter massless fermions in nature, we can explain their masslessness from symmetry principles

Local (gauge) symmetries

- Local (gauge) symmetries: symmetries, where the transformation can be different at different space-time points $\theta(x_\mu)$
- Local symmetries have far-reaching consequences!
- All internal symmetries imposed in defining the SM are local
- Local transformation of a complex scalar field:

$$\phi(x) \rightarrow e^{iq\theta(x)}\phi(x), \quad \phi^\dagger(x) \rightarrow e^{-iq\theta(x)}\phi^\dagger(x)$$

- All terms in the Lagrangian that do not involve derivatives of fields and are invariant under a global symmetry are also invariant under the corresponding local symmetry

Local (gauge) symmetries

- The derivative terms are not invariant under the local symmetry

$$\partial^\mu \phi(x) \rightarrow \partial^\mu [e^{iq\theta(x)} \phi(x)] = e^{iq\theta(x)} \phi(x) + iq e^{iq\theta(x)} [\partial^\mu \theta(x)] \phi(x)$$

- \Rightarrow the kinetic term of a scalar is not invariant under the local symmetry (same is true for fermion fields)

$$\partial^\mu \phi^\dagger(x) \partial_\mu \phi(x) \rightarrow [\partial^\mu \phi^\dagger(x) - iq [\partial^\mu \theta(x)] \phi^\dagger(x)] [\partial_\mu \phi(x) + iq [\partial_\mu \theta(x)] \phi(x)] \neq \partial^\mu \phi^\dagger(x) \partial_\mu \phi(x)$$

- **Consequence:** in a theory with only scalar and fermions fields a local symmetry acting on these fields forbids the kinetic terms.

- this is a BIG deal: such fields are not dynamic and can't describe the particles we observe in nature!
- we have to find a way to "correct" for this

Local (gauge) symmetries

- Replace the kinetic term $\partial^\mu \phi$ with a so-called “covariant” derivative $D^\mu \phi$
- $D^\mu \phi$ should transform under the local symmetry as $\partial^\mu \phi$ under the global symmetry

$$D^\mu \phi \rightarrow e^{iq\theta} D^\mu \phi$$

- Using the local transformation $\phi \rightarrow e^{iq\theta} \phi$ (x -dependence implicit) we get for the covariant derivative

$$D^\mu = \partial^\mu + igqA^\mu$$

$$A^\mu \rightarrow A^\mu - \frac{1}{g} \partial^\mu \theta$$

- g is a dimensionless constant which we take to be positive (**coupling constant**)
- $A^\mu(x)$ is a vector field that transforms under the local symmetry (**gauge field**)
- Following our principles we must add a kinetic term for the gauge field A^μ

Local (gauge) symmetries

- To add a kinetic term for A^μ we define the field strength tensor $F^{\mu\nu}$

$$[D^\mu, D^\nu] = igqF^{\mu\nu} \quad F^{\mu\nu} = \partial^\mu A^\nu - \partial^\nu A^\mu$$

- The Lorentz-invariant kinetic term for the gauge field is (invariant under the local symmetry)

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$

- **Important points:**

- given the kinetic term, A^μ is a dynamic field and its excitations are physical particles (e.g. the photon)
- a mass term of the form $\frac{1}{2}m^2 A^\mu A_\mu$ is not allowed (show that it breaks gauge invariance) \rightarrow gauge bosons have only two degrees of freedom
- a gauge field related to an Abelian symmetry does not couple to itself
- transformation law for the gauge field is additive (A^μ transforms like a phase)
- if a local symmetry decomposes $U(1)_a \times U(1)_b \rightarrow$ two gauge fields A_μ^a, A_μ^b + two independent couplings g_a, g_b

Charge (local symmetry)

- Global symmetry implies charge conservation
- In the case of local symmetry there is an additional implication to the charge

Any ideas what is the implication?

Charge (local symmetry)

- Global symmetry implies charge conservation
- In the case of local symmetry there is an additional implication to the charge: **it sets the strength of the interaction with the gauge boson**
- Consider a local $U(1)$ symmetry. The covariant derivative of a field with charge q is

$$D^\mu = \partial^\mu + igqA^\mu$$

- The kinetic term of the fermion field is

$$i\bar{\psi}\gamma^\mu D_\mu \psi = i\bar{\psi}\gamma^\mu \partial_\mu \psi - gq\bar{\psi}\gamma^\mu A_\mu \psi$$

Interaction between the fermion and the vector field!

- The strength of the interaction is governed by the coupling constant g times the charge q

Charge (local symmetry)

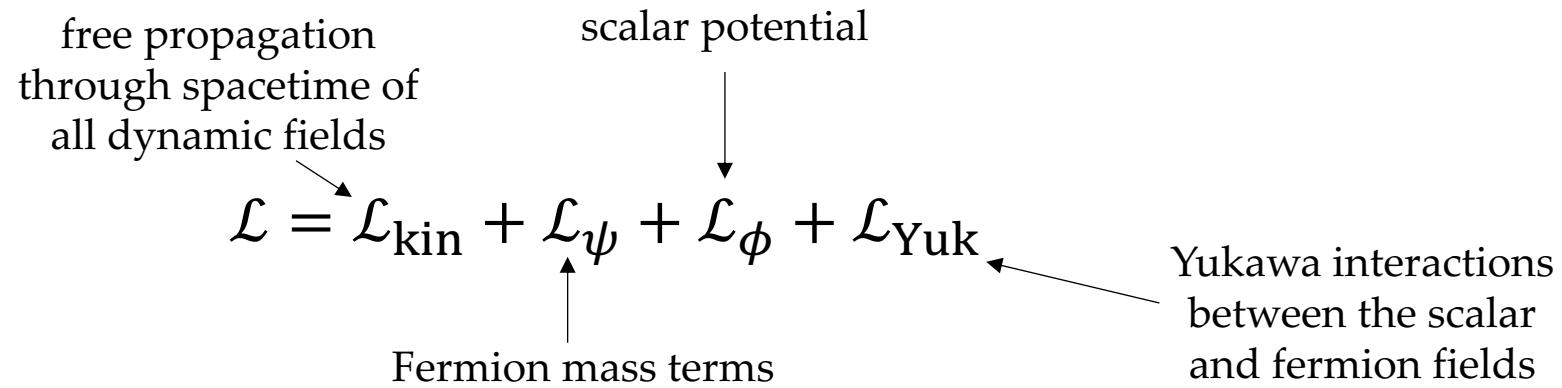
$$D^\mu = \partial^\mu + igqA^\mu$$

$$i\bar{\psi}\gamma^\mu D_\mu \psi = i\bar{\psi}\gamma^\mu \partial_\mu \psi - gq\bar{\psi}\gamma^\mu A_\mu \psi$$

Interaction between the fermion and the vector field!

- The larger the charge q , the stronger the coupling to the gauge boson
- Comments:
 - D^μ depends on the charge of the field on which it acts (different for fields with different charges)
 - what appears in the Lagrangian is gq , not g and q separately
 - for Abelian local symmetries one can rescale the coupling and the charge to keep gq constant
 - when we have several fields with the same charges one should rescale all of them the same way
 - ratio between the charges of all fields (e.g. q_2/q_1) is physical and sets the relative strength of the interaction of ψ_2 and ψ_1 with the gauge field A_μ (different in the non-Abelian case)

Abelian symmetries summary



- The most general renormalisable \mathcal{L} with scalar, fermion, and gauge can be decomposed into four terms
- The invariance under **local $U(1)$ symmetry** requires the introduction of **vector (gauge) bosons**
- The vector boson interacts with all scalars and fermions charged under the symmetry
- **Global symmetry \Rightarrow charge conservation**
- **Local symmetry \Rightarrow the charge sets the strength of the interaction with the gauge field**
- In the SM we impose only local symmetries (Abelian and non-Abelian)

Example of an Abelian theory: Quantum electrodynamics (QED)

- Simple version of QED with two Dirac fermions:

- local $U(1)_{\text{EM}}$ theory
- two Dirac fermions: $\ell_L^i(-1), \ell_R^i(-1)$ $[i = 1, 2]$
- no scalar fields $\mathcal{L}_{\text{Yuk}} = \mathcal{L}_\phi = 0$

$$\mathcal{L}_{\text{kin}} = i\overline{\ell_L^1}\gamma^\mu D_\mu \ell_L^1 + i\overline{\ell_L^2}\gamma^\mu D_\mu \ell_L^2 + i\overline{\ell_R^1}\gamma^\mu D_\mu \ell_R^1 + i\overline{\ell_R^2}\gamma^\mu D_\mu \ell_R^2$$

$$-\mathcal{L}_\psi = \overline{\ell_L^i} m_{ij} \ell_R^j + \text{h. c.} = (\overline{\ell_L^1}, \overline{\ell_L^2}) \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{pmatrix} \overline{\ell_R^1} \\ \overline{\ell_R^2} \end{pmatrix} + \text{h. c.}$$

V_L, V_R – unitary matrices

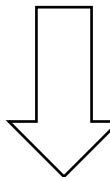
$$V_L \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} V_R^\dagger = \begin{bmatrix} m_e & 0 \\ 0 & m_\mu \end{bmatrix} \longrightarrow -\mathcal{L}_\psi = \overline{\ell_L^i} V_L^\dagger V_L m_{ij} V_R^\dagger V_R \ell_R^j + \text{h. c.}$$

Diagonalise the mass matrix
(question 3.5 in the book)

Example of an Abelian theory: Quantum electrodynamics (QED)

- Rotation from the original basis to the new one where the mass matrix is diagonal (**mass basis**)

$$\begin{pmatrix} \ell_L^1 \\ \ell_L^2 \end{pmatrix} \rightarrow \begin{pmatrix} e_L \\ \mu_L \end{pmatrix} = V_L \begin{pmatrix} \ell_L^1 \\ \ell_L^2 \end{pmatrix}, \quad \begin{pmatrix} \ell_R^1 \\ \ell_R^2 \end{pmatrix} \rightarrow \begin{pmatrix} e_R \\ \mu_R \end{pmatrix} = V_R \begin{pmatrix} \ell_R^1 \\ \ell_R^2 \end{pmatrix}$$



In the new
basis

$$-\mathcal{L}_\psi = m_e \bar{e}e + m_\mu \bar{\mu}\mu$$

- The rotation keeps the kinetic term invariant, the full QED Lagrangian is then

$$\mathcal{L}_{\text{kin}} = i\bar{e}\gamma^\mu D_\mu e + i\bar{\mu}\gamma^\mu D_\mu \mu - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - m_e \bar{e}e - m_\mu \bar{\mu}\mu$$

- Three free parameters: $\alpha = e^2/4\pi, m_e, m_\mu$

$$\alpha^{-1} = \mathbf{137.035999084(21)}, \quad m_e = \mathbf{0.51099895000(15) \, \text{MeV}/c^2}, \quad m_\mu = \mathbf{105.6583755(23) \, \text{MeV}/c^2}$$

Summary of Lecture 2

Main learning outcomes

- Get familiar with different types of Abelian internal symmetries
- Learn what happens if we impose these symmetries on the Lagrangian and what is the spectrum of allowed fields and interactions
- See an example of an Abelian theory: Quantum Electrodynamics (QED)